

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7 3 5 0 3 4 8 1 5 8

CO-ORDINATED SCIENCES

0973/41

Paper 4 Theory (Extended)

October/November 2023

2 hours

You must answer on the question paper.

No additional materials are needed.

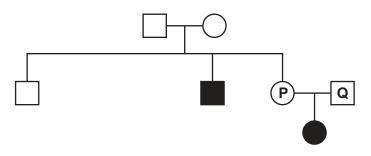
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 28 pages. Any blank pages are indicated.


DC (SL) 335473 © UCLES 2023

[Turn over

1 (a) Fig. 1.1 is a pedigree diagram for the inheritance of a genetic condition called cystic fibrosis.

The allele for cystic fibrosis is recessive **a**.

The allele for no cystic fibrosis is dominant **A**.

key	
female with cystic fibrosis	male with cystic fibrosis
female without cystic fibrosis	male without cystic fibrosis
Fig.	1.1
se Fig. 1.1 to state:	

(i)	Use Fig. 1.1 to state:	
	the number of people with the genotype aa	
	the number of people with the sex chromosomes XY.	[2]
(ii)	State the term that is used to describe the genotype aa .	
		[1]

(iii) The couple labelled P and Q in Fig. 1.1 decide to have another child.

Complete the genetic diagram in Fig. 1.2 to calculate the percentage likelihood of this child having cystic fibrosis.

	parent P gametes		
parent Q			
parent Q gametes			

percentage likelihood of child having cystic fibrosis.

Fig. 1.2

[3]

(b) Cystic fibrosis causes mucus produced by cells lining the airways to become ve sticky.						
	(i)	State the name of the cells in the airways that produce mucus.				
		[1]			
	(ii)	Explain why people with cystic fibrosis are more likely to have frequent lung infections.				
		[2	2]			
(c)	Lun	g cancer is another disease that affects the lungs.				
	Stat	e the major cause of lung cancer.				
		[1]			
		[Total: 10	01			

		il contains hydrocarbon molecules.	
(a)	Sta	te what is meant by a hydrocarbon.	
			 [1]
(b)	Alka	anes are hydrocarbon molecules.	
	(i)	State the type of bond found in alkane molecules.	
		Tick (✓) one box.	
		double covalent	
		intermolecular	
		ionic	
		single covalent	- 4 -
			[1]
	(ii)	Alkanes are saturated hydrocarbons.	
		State which molecule is a saturated hydrocarbon.	
		Tick (✓) one box.	
		C_2H_2	
		C_2H_4	
		C ₃ H ₈	
		C ₄ H ₈	[1]
(c)		ger alkanes are cracked to form smaller alkanes and another type of hydrocart ecule.	
	(i)	State the name of this other type of hydrocarbon molecule.	
			[1]
	(ii)	State the conditions needed for cracking.	
		1	
		2	
			[2]

© UCLES 2023 0973/41/O/N/23

2

(iii) The equation shows the cracking of $C_{24}H_{50}$.

Balance the equation.

$$C_{24}H_{50} \rightarrow C_{10}H_{22} + \dots C_{6}H_{12} + \dots C_{6}H_{12}$$

(d) Hydrocarbon molecules are used as fuels.

Burning fuels produce pollutants in the air. These pollutants cause problems.

Draw **one** line from each pollutant to the problem it causes.

pollutant

acid rain

carbon monoxide

particulates turn buildings black

global warming

sulfur dioxide

poisoning of living organisms

[2]

[Total: 10]

Nuc	clear	power stations use nuclear fission to generate electricity.						
The	The nuclear fission of uranium releases thermal energy.							
		rmal energy produced is used to convert water into steam which drives the turbines that electricity.						
(a)	Sta	te one advantage of generating electricity from nuclear fission.						
		[1]						
(b)	Bar	ium-141 ($^{141}_{56}$ Ba) is produced by the nuclear fission of uranium.						
	Bar	ium-141 decays by emitting a beta-particle.						
	(i)	Use the correct nuclide notation to show the decay of barium-141.						
		¹⁴¹ ₅₆ Ba → La + β						
		[2]						
	(ii)	A 160 g sample of barium-141 has a half-life of 18 minutes.						
		Calculate the time it will take for the mass of barium-141 in the sample to decrease to 10 g.						
		time = minutes [2]						

© UCLES 2023 0973/41/O/N/23

3

(c) Fig. 3.1 shows a simple turbine, similar to those used in a nuclear power station.

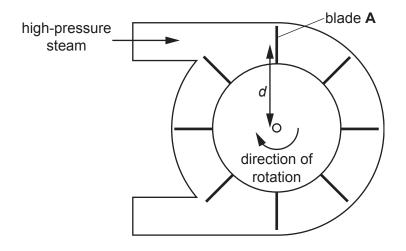


Fig. 3.1

(i) The high-pressure steam is at a pressure of $1.8 \times 10^7 \, \text{Pa}$.

Blade **A** has a surface area of 0.12 m².

Show that the force acting on blade $\bf A$ is $2.2 \times 10^6 \, N$.

[1]

(ii) The moment of the force, from the high-pressure steam acting on blade $\bf A$, is $1.35 \times 10^6 \, \rm N \, m$. Calculate the distance $\it d$, from the centre of blade $\bf A$ to the pivot of the turbine.

distance *d* = m [2]

(iii) When the turbine spins, blade **A** moves with a constant speed but a changing velocity.

Explain why the velocity of blade **A** changes.

[Total: 9]

4 (a) A student investigates the effect of different types of sugar on the anaerobic respiration in yeast.

She mixes yeast with five different types of sugar solutions of the same concentration and measures the volume of gas produced after 2 hours.

Table 4.1 shows the results.

Table 4.1

sugar	volume of gas produced in 2 hours/cm ³
Α	9
В	16
С	82
D	3
E	65

(i)	Identify the sugar in Table 4.1 that produces the largest volume of gas.	
		[1]
(ii)	Calculate the rate of anaerobic respiration for sugar A in Table 4.1.	
	rate of anaerobic respiration for sugar A = cm ³ /min	[2]
(iii)	State the name of the gas produced in this investigation.	
		[1]
(iv)	State one practical use for the anaerobic respiration of yeast.	
		[1]

(b)	Describe three ways that aerobic respiration is different from anaerobic respiration in humans .
	1
	2
	3
	[3]
(c)	Respiration is one of the characteristics of living organisms.
	State one other characteristic.
	[1]
	[Total: 9]

(a)	The	pH of a solution	describes how	v acidic or alka	aline it is.			
	Sta	State which of these values shows the pH of a strong acid.						
	Tick (✓) one box.							
	14							
	7							
	5							
	1						[4]	
(b)	Cor	nnlote the center	oos about dilu	to hydrochlori	e acid and agues	us sodium hydroxida	[1]	
(b)				-	•	us sodium hydroxide		
	Cho	oose words from t	the list. Each v	vord may be u	ised once, more t	han once or not at a	II.	
	ac	ceptor c	atalyst	donor	an electron	a proton		
	Dilu	te hydrochloric a	cid is defined a	as an acid bed	cause it is			
	Aaı							
		eous sodium hyd	droxide is defir	ned as a base	because it is			
	7.9						[3]	
(c)	(i)				because it is carbonate, CuCO	3.	[3]	
(c)		Hydrochloric aci	id, HC <i>l</i> , reacts	with copper of			[3]	
(c)		Hydrochloric aci	id, HC l , reacts, CuC l_2 , water	with copper or	carbonate, CuCO		[3]	
(c)		Hydrochloric aci	id, HC l , reacts, CuC l_2 , water	with copper of and carbon of equation for	carbonate, CuCO dioxide are made. this reaction.			
(c)	(i)	Hydrochloric aci Copper chloride Construct the ba	id, HC <i>l</i> , reacts , CuC <i>l</i> ₂ , water alanced symbo	with copper of and carbon of equation for	carbonate, CuCO dioxide are made. this reaction.			
(c)		Hydrochloric aci Copper chloride Construct the ba	id, HC <i>l</i> , reacts , CuC <i>l</i> ₂ , water alanced symbo	with copper of and carbon of equation for the control of the contr	carbonate, CuCO dioxide are made. this reaction.		[2]	
(c)	(i)	Hydrochloric aci Copper chloride Construct the ba	id, HC <i>l</i> , reacts c, CuC <i>l</i> ₂ , water alanced symbo	with copper of and carbon of equation for exide and its	carbonate, CuCO dioxide are made. this reaction.		[2]	

© UCLES 2023 0973/41/O/N/23

5

(d) 2.45 g of sulfuric acid reacts with 1.60 g of copper oxide.

Copper sulfate, CuSO₄, is made.

$$\rm H_2SO_4 \, + \, CuO \, \rightarrow \, CuSO_4 \, + \, H_2O$$

Calculate the number of moles of sulfuric acid and the number of moles of copper oxide.

Use your answers to determine the **limiting reactant** in this reaction.

Show your working.

[A_r: H, 1; Cu, 64; O, 16; S, 32]

limiting reactant =[4]

[Total: 12]

6 Fig. 6.1 shows a bee collecting pollen from a flower.

Fig. 6.1

- (a) The maximum speed of a bee is 5.8 m/s.
 - (i) Calculate the maximum distance a bee can travel in 60 seconds.

maximum distance =		m	[2]
--------------------	--	---	-----

(ii) The mass of the bee is 0.20 g.

Calculate the kinetic energy of the bee when it is moving at 5.8 m/s.

kinetic energy = J [3]

(b)	The flower uses brightly coloured petals to attract the bee. The petals reflect ultraviolet light and visible light, both of which are part of the electromagnetic spectrum.
	State one similarity and one difference between visible light and ultraviolet light.
	similarity
	difference
	[2]
(c)	The bee becomes positively charged as it flies through the air.
	Suggest how this charge is produced.
	[3]
(d)	When suspended in water, the pollen from the flower can be used to study Brownian motion.
	Describe how Brownian motion provides evidence for the kinetic molecular model of matter.
	[3
	[Total: 13
	L Comment

7 (a) A scientist measures the activity of the enzyme amylase at different temperatures.

Fig. 7.1 shows a graph of the results.

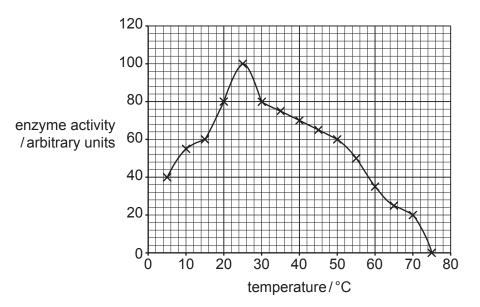


Fig. 7.1

Complete the sentences to describe and explain the results in Fig. 7.1.
Amylase breaks down the substrate into smaller molecules of
As temperature increases, the activity of amylase increases until it reaches its optimum
temperature of°C.
As the temperature increases, the amylase particles gain energy.
This results in more frequent successful collisions between amylase and its substrate.
At temperatures above 75 °C, all of the amylase has become
This means the of amylase has changed shape and is no
longer complementary to the substrate. [6]
State two parts of the alimentary canal which secrete amylase.
1
2[2]
L J

© UCLES 2023 0973/41/O/N/23

(b)

(c) Enzymes are proteins.										
	(i)	List the chemical elements present in all proteins.								
			. [2]							
	(ii)	State the name of the chemical test for the presence of proteins.								
			. [1]							
		[Total	: 11]							

8 Non-metallic elements exist as simple molecules with covalent bonds.

Non-metallic elements can also exist as giant covalent structures.

(a) Oxygen is a simple molecule with covalent bonds.

Table 8.1 gives some properties of four substances, **A**, **B**, **C** and **D**.

Table 8.1

	melting point/°C	boiling point/°C	conducts electricity in liquid state?
Α	1538	2862	yes
В	780	1420	yes
С	– 91	98	no
D	-218	-183	no

State the most likely set of properties for oxygen.

Choose from A, B, C or D.

(b) (i) Iron reacts with oxygen to make hydrated iron oxide (rust).

$$4Fe + 3O_2 + 6H_2O \rightarrow 4Fe(OH)_3$$

224g of oxygen reacts with iron to make 1kg of rust.

Calculate the volume occupied by 224g of oxygen gas.

The molar gas volume at room temperature and pressure is 24 dm³.

$$[A_r: O, 16]$$

(c) Ammonia, NH₃, is also a simple molecule with covalent bonds.

Complete the dot-and-cross diagram in Fig. 8.1 to show the covalent bonding in ammonia.

Only show the outer shell electrons.

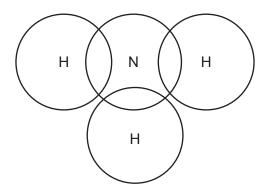


Fig. 8.1

(d) Graphite and diamond are giant covalent structures.

Fig. 8.2 shows the structures of graphite and diamond.

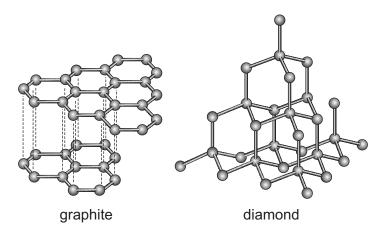


Fig. 8.2

Explain why graphite is used as an electrical conductor but diamond is **not**.

Use ideas about structure and bonding.

	[2]

[Total: 10]

[2]

9 A student is investigating electromagnetic induction by dropping a magnet through a coil of wire.

The coil of wire is connected to a device which measures the electromotive force (e.m.f.) induced in the coil.

Fig. 9.1 shows the equipment used by the student.

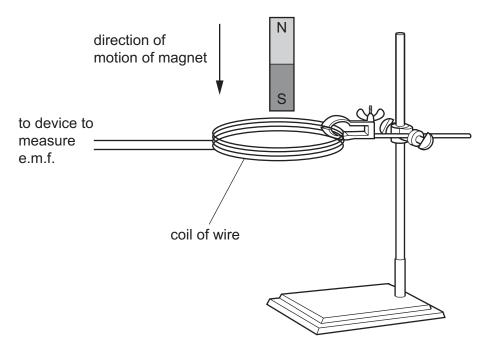


Fig. 9.1

(a) Fig. 9.2 shows the induced electromotive force (e.m.f.) measured as the magnet falls through the coil of wire.

Fig. 9.2 shows two peaks, X and Y.

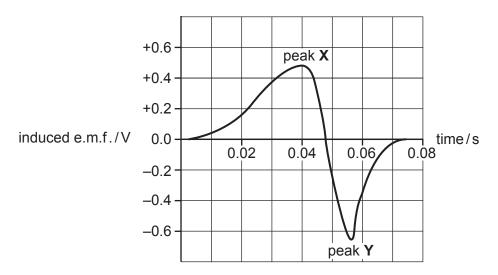


Fig. 9.2

	(i)	Explain why:													
		peak X is positive and peak Y is negative													
		peak Y has a larger magnitude than peak X .													
				[2]											
	(ii)	(ii) The data in Fig. 9.2 was obtained using a coil made of 800 turns of wire.													
	On Fig. 9.2, sketch the data which would be obtained if a coil containing 400 turns w used with the same magnet.														
(b)		en writing up the results, the student is no ential difference or the induced electromotive		ite about the induced											
		Place ticks in Table 9.1 against each statement that is correct for potential difference and for electromotive force (e.m.f.).													
	You	may place one or two ticks in each row. The	e first row has been do	ne for you.											
		Table 9.1													
			electromotive force (e.m.f.)	potential difference											
is mea	sured	d in volts	✓	✓											
is equa	al to v	vork done per unit charge													
relates	to th	e energy supplied by the source													
relates	to th	e energy transferred by a circuit component													
				[2]											
(c)	The	coil of wire used in the investigation is made	of copper. Copper is a	a solid.											
	Cor a so	nplete the sentences to describe the arranger blid.	ment of atoms in a soli	d and the properties of											
	In a	solid, the arrangement of atoms is													
	The	forces between atoms are	which allows the aton	ns to											
	but	keeps them in a position.		[2]											

(d)	Copper is a good thermal conductor.
	Describe how thermal energy is transferred in copper.
	[3]

[Total: 11]

BLANK PAGE

10 Fig. 10.1 shows aerial photographs of the same area taken at different times.

Photograph **A** was taken in 1985.

Photograph **B** was taken in 2000.

Areas of forest are darker in the photograph and areas that have been cleared of trees are lighter.

Fig. 10.1

(a)	The	change shown in Fig. 10.1, between 1985 and 2000, affected the environment.	
	(i)	Explain why this change affected the concentration of carbon dioxide in the atmosph	iere.
	<i>(</i> 11)		. [2]
	(ii)	Describe the effects of this change on animal species in the area.	
			. [3]
(b)	The	area in Fig. 10.1 can be described as an ecosystem.	
	Defi	ine the term ecosystem.	
			[2]
(c)	Stat	te the principal source of energy input into the ecosystem.	[4]
(d)	Ase	exual reproduction can be useful to plants in the wild.	. [י]
(,		te two advantages of asexual reproduction.	
	2		
			[2]

[Total: 10]

(a)	Mol	ten lead(II) bromide conducts electric	city.									
	(i)	When mo	olten lead(II) bromide is ele	ectrolysed, lead is made at	the cathode.								
		State the	product at the anode.										
					[1]								
	(ii)	Explain w	hy molten lead(II) bromide	e conducts electricity.									
					[2]								
(b)	Αqι	leous copp	per(II) sulfate can be electr	rolysed using carbon elect	rodes.								
	Cop	oper is forn	ned at the cathode.										
Construct the ionic half-equation for the formation of copper.													
					[2]								
(c)	A st	tudent elec	trolyses aqueous copper(I	II) sulfate using copper ele	ectrodes.								
	The	student w	eighs the electrodes befor	re the experiment to find th	eir mass.								
			etrolysis, the student wash ain to find their mass.	hes and dries the electro	des and then weighs the								
	Tab	le 11.1 sho	ows the results.										
			Tab	le 11.1									
			mass of electrode before electrolysis/g	mass of electrode after electrolysis/g	change in mass of electrode/g								
		anode	2.63	2.01	-0.62								
	(cathode	2.46										
	(i)	The stude	ent forgot to record the ma	ss of the cathode after the	electrolysis.								
		Suggest t	the change in mass of the	cathode in grams.									
		Write you	ır answer in Table 11.1.		[1]								
	(ii)	The anod	le loses mass.										
		Explain w	hy the anode loses mass.										
					[2]								

[Total: 8]

© UCLES 2023 0973/41/O/N/23

11

BLANK PAGE

12 Fig. 12.1 shows a ray of light refracted as it enters a glass block.

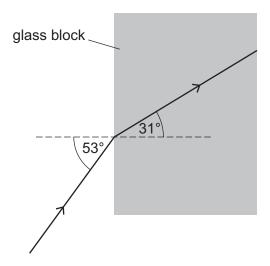


Fig. 12.1

(a) Use Fig. 12.1 to calculate the refractive index of the glass block.Give your answer to 3 significant figures.

refractive index =[2]

(b) Fig. 12.2 shows how the refractive index of glass varies with the wavelength of light used.

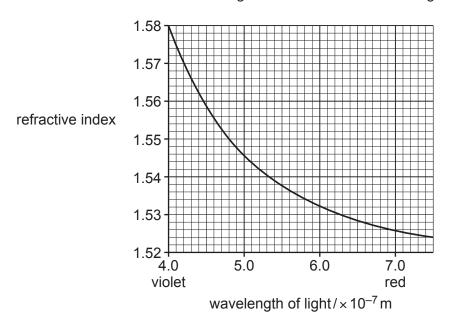


Fig. 12.2

(i) Use Fig. 12.2 to determine the wavelength of light used in Fig. 12.1.

	wavelength = m [1]
(ii)	Violet light has a wavelength of 4.0×10^{-7} m.
	Red light has a wavelength of 7.0×10^{-7} m.
	Describe how Fig. 12.2 shows that red light travels faster through glass than violet light.

(c) Fig. 12.3 shows the dimensions of the glass block.

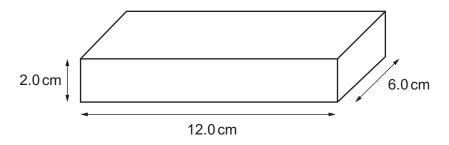


Fig. 12.3

The density of glass is 2.80 g/cm³.

Use Fig. 12.3 to calculate the mass of the glass block.

mass = g [3]

[Total: 7]

The Periodic Table of Elements

	III/	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ä	bromine 80	53	Н	iodine 127	85	¥	astatine -			
	5				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>n</u>	tellurium 128	84	Po	polonium	116	_	livermorium -
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	ä	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ъ	lead 207	114	Εl	flerovium -
	≡				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	Ι	indium 115	81	lΤ	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	Hg	mercury 201	112	ე	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
dn											28	z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
Group											27	ပိ	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	92	SO	osmium 190	108	£	hassium
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	n radium rutherfordium dubnium seaborgium bohrium hassium meitnerium dammstadtum coentgenium coentgenium interconum flerovium lerovium ler
						loc	1SS				24	ර්	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>ra</u>	tantalum 181	105	Q D	dubnium –
					10	ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	88	Š	strontium 88	56	Ва	barium 137	88	Ra	radium
	_				33	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ŗ.	francium

71	Γn	Intetium	175	103	۲	lawrencium	I
	Υp					_	
69	Tm	thulium	169	101	Md	mendelevium	1
89	щ	erbium	167	100	Fm	fermium	I
29	웃	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ర	californium	ı
65	Д	terbium	159	97	BK	berkelium	ı
64	В	gadolinium	157	96	Cm	curium	ı
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pn	plutonium	ı
61	Pm	promethium	ı	93	ď	neptunium	ı
09	βN	neodymium	144	92	\supset	uranium	238
69	Ā	praseodymium	141	91	Ра	protactinium	231
28	Ce	oerium	140	06	T	thorium	232
22	Гa	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.